
problems.  Many factors contribute to
scalability, including the architecture
of the parallel computer and the paral-
lel implementation of the algorithm.
However, one important issue is often
overlooked: the scalability of the algo-
rithm itself.  Here, scalability is a
description of how the total computa-
tional work requirements grow with
problem size, which can be discussed
independent of the computing 
platform.

Many of the algorithms used in
today’s simulation codes are based on
yesterday’s unscalable technology.
This means that the work required to
solve increasingly larger problems
grows much faster than linearly (the
optimal rate).  The use of scalable
algorithms can decrease simulation
times by several orders of magnitude,
thus reducing a two-day run on an
MPP to 30 minutes (see Figure 1).
Furthermore, the codes that use this
technology are limited only by the size
of the machine’s memory because
they are able to effectively exploit
additional computer resources to
solve huge problems. 
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Objective
The CASC scalable linear solvers
project is developing scalable
algorithms and software for the
solution of large, sparse linear
systems of equations on massively
parallel computers having
upwards of 10,000 processors.

Applications
We wish to significantly accelerate
the solution of the linear systems
that arise in many large-scale
scientific simulation codes.
Applications of interest include
radiation diffusion and transport,
structural dynamics, flow in
porous media, and magnetic
fusion energy.  The linear systems
result from discretizations of
partial differential equations on
structured, block-structured, and
unstructured meshes.

The Center for Applied Scientific
Computing at Lawrence
Livermore National Laboratory

(LLNL) is developing scalable algo-
rithms and software for solving large,
sparse linear systems of equations on
parallel computers. The problems of
interest arise in the simulations codes
being developed to study physical
phenomena in the defense, environ-
mental, energy, and biological
sciences.

The Need for Scalable
Algorithms

Computer simulations play an
increasingly important role in 
scientific investigations, supplement-
ing (and in some cases, supplanting)
traditional experiments.  In engineer-
ing applications, such as automotive
crash studies, numerical simulation is
much less expensive than experimen-
tation.  In other applications, such as
global climate change, experiments
are impractical (or unwise), and sim-

ulations are used to explore the fun-
damental scientific issues.

Finally, in the area of nuclear
weapons stockpile stewardship, full-
blown experiments are prohibited by
the Comprehensive Test Ban Treaty,
and detailed numerical simulations
are needed to fill the resulting void.
To address this need, the Depart-
ment of Energy launched the
ambitious Accelerated Strategic
Computing Initiative (ASCI) project,
the goal of which is to build a simula-
tion capability to help ensure the
reliability and safety of the nation’s
nuclear deterrence.  Toward this end,
codes are being developed to solve
highly resolved three-dimensional
problems that require the computa-
tional speed and large memory of the
massively parallel ASCI computers.

Although parallel processing is
necessary for the numerical solution
of these problems, alone it is not suffi-
cient; one also needs scalable
numerical algorithms.  By “scalable”
we generally mean the ability to use
additional computational resources
effectively to solve increasingly larger

Number of Processors (Problem Size)

0

50

100

150

200

1 10 100 1000

T
im

e 
to

 S
ol

ut
io

n 
J2CG

ICCG

MGCG

unscalable

scalable

Scalable Linear
Solvers

Figure 1.  Scalable linear solvers (such as multigrid) enable terascale simulation by keeping solution
time constant as the problem size increases with the number of processors. J2CG, ICCG, and MGCG
are conjugate gradient algorithms with Jacobi, incomplete Cholesky, and multigrid preconditioners,
respectively.
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Scalable Linear Solvers

Scalable algorithms enable the
application scientist to both pose and
answer new questions.  For example,
if a given simulation (with a particu-
lar resolution) takes several days to
run, and a refined (i.e., more accu-
rate) model would take much longer,
the application scientist may forego
the larger, higher fidelity simulation.
He or she also may be forced to nar-
row the scope of a parameter study
because each run takes too long.  By
decreasing the execution time, a scal-
able algorithm allows the scientist to
do more simulations at higher 
resolutions.

Linear Solver Research
Directions

In many large-scale scientific 
simulation codes, the majority of the
run time is spent in a linear solver.  For
this reason, much of the scalable algo-
rithms research and development is
aimed at solving these large, sparse
linear systems of equations on parallel
computers.

Multigrid is an example of scalable
linear solver technology.  It uses a
relaxation method like Gauss-Seidel to
efficiently damp high-frequency error,

leaving only low-frequency, or smooth,
error.  The multigrid idea is to recog-
nize that this low-frequency error can
be accurately and efficiently solved
for on a coarser (i.e., smaller) grid.
Recursive application of this idea to
each consecutive system of coarse-
grid equations leads to a multigrid
V-cycle (Figure 2).  If the components
of the V-cycle are defined properly,
the result is a method that uniformly
damps all error frequencies with a
computational cost that depends only
linearly on the problem size.  In other
words, multigrid algorithms are 
scalable. 

Our work uses two basic multigrid
approaches: geometric and algebraic.
For linear systems defined on struc-
tured meshes (e.g., logically 
rectangular meshes) and semi-
structured meshes (e.g., locally
refined meshes), we are developing
geometric multigrid methods.  An
algorithm of this type was used in a
three-dimensional parallel groundwa-
ter simulation (using eight million
spatial zones) to speed up the linear
solves by a factor of 120 with nearly
90% scaled efficiency on 256 proces-
sors of the Cray T3D.  More recently,

we implemented a similar algorithm
in one of the ASCI performance codes.
Preliminary results demonstrate the
algorithmic scalability of multigrid in
this multi-physics code; the linear
algebra was sped up by a factor of 27,
and overall simulation time was
reduced 10-fold for a two-dimensional
test problem (128,000 spatial zones).
We have also demonstrated the scala-
bility of this multigrid solver on the
ASCI platforms.  To date, the largest
linear system we have solved had 64
million spatial zones, and the solution
took 63 seconds on 1000 processors of
ASCI-Red.

For linear systems defined on
unstructured meshes, it is difficult to
use geometric information in a way
that is simple, straightforward, and
portable from application to applica-
tion.  For this reason, we are
developing new algebraic multigrid
(AMG) methods.  We are developing a
parallel AMG solver to address the
open research question of how to
coarsen an unstructured grid in paral-
lel.  Research is also focused on
improving the performance of AMG
on finite element problems.

To enhance multigrid’s robustness,
we often use it as a preconditioner for
Krylov methods such as conjugate
gradients, but multigrid algorithms
still tend to be somewhat problem-
specific.  To extend our capability to
solve a wider variety of linear sys-
tems, we are also developing more
general-purpose matrix precondition-
ers, including incomplete
factorizations and sparse approximate
inverses.  Although these methods are
typically not as algorithmically scal-
able as multigrid methods, good
scalable implementations can show
appreciable benefit on large numbers
of processors.  In addition, one of our
research directions is to improve the
algorithmic scalability of these meth-
ods by incorporating multigrid (or
multilevel) techniques.

For more information about Scalable
Linear Solvers, contact Robert Falgout, 
(925) 422-4377, rfalgout@llnl.gov.
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Figure 2.  The down-cycle of a multigrid V-cycle uses smoothers to damp oscillatory error
components at different grid scales.  The up-cycle corrects the smooth error components remaining
on each grid level by using the error approximations on coarser (i.e., smaller) grids.  

A Multigrid V -cycle
Multigrid uses coarse grids to 
efficiently damp smooth error 
components.


